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Abstract. 12C+12C is one of the single most important nuclear reactions in astrophysics. It strongly influences
late evolution of massive stars as well as the dynamics of type Ia supernovae and x-ray superbursts. An accurate
estimation of the cross section at relevant astrophysical energies is extremely important for modeling these sys-
tems. However, the situation is complicated by the unpredictable resonance structure observed at higher ener-
gies. Two recent studies at Notre Dame have produced results which help reduce the uncertainty associated with
this reaction. The first uses correlations with the isotope fusion systems, 12C+13C and 13C+13C, to establish an
upper limit on the resonance strengths in 12C+12C. The other focuses on the specific channel 12C+12C→23Mg+n
and its low-energy measurement and extrapolation which is relevant to s-process nucleosynthesis. The results
from each provide important constraints for astrophysical models.

1 Introduction

The 12C+12C fusion reaction is critical to a number of as-
trophysical systems. Perhaps the most obvious is in late
stellar evolution of massive stars (>8M�), where the low-
energy reaction cross section sets the thermodynamic con-
ditions in the stellar core and surrounding shells during
carbon burning. The carbon fusion reaction is also key for
triggering type Ia supernovae [1], where the low-energy
cross section affects the thermodynamic conditions within
the white dwarf just prior to the explosion. The same is
true for the x-ray superburst which is also triggered by the
carbon fusion reaction [2, 3]. Superbursts are extraordi-
narily intense x-ray bursts (about 1000 times brighter and
longer than normal x-ray bursts). Only a handful of ob-
servations exist, but the 12C+12C reaction cross section is
critical for modeling these systems.

Measurement of the 12C+12C cross section at low en-
ergies is difficult. The fusion reaction proceeds through
the formation of the 24Mg compound nucleus at high ex-
citation energy (∼15 MeV) followed by alpha, proton, or
neutron decay to states in the corresponding residual nu-
clei (20Ne, 23Na, and 23Mg respectively). The proton and
alpha decay channels are the most probable due to their
positive Q-values (Qp=+2.2 MeV and Qα=+4.6 MeV),
while the neutron channel comprises less than 1% of the
total yield at astrophysical energies [4] due to a negative
Q-value (Qn=-2.6 MeV).

ae-mail: bucher3@llnl.gov

The 12C+12C cross section falls off steeply at low
energies due to the low probability for penetrating the
Coulomb barrier. The important energy range for astro-
physical applications is generally between 1-3 MeV in the
center-of-mass system, at which the cross section is ex-
pected to be as low as 10−22b using the extrapolation from
Ref. [5]. This is prohibitively low for measurements with
current ion source/accelerator technology. Therefore, the
reaction cross section must be modeled at the lowest as-
trophysical energies. However, the modeling is compli-
cated by the existence of resonances in the excitation func-
tion. This resonance structure was first observed in 1960
by Almqvist, Bromeley, and Kuehner [6, 7] and was at-
tributed to molecular resonances in the 24Mg compound
nucleus. The resonances were observed below the barrier
down to the lowest measured energy in all decay chan-
nels. To date, there is still no theory which can reliably
predict the location of these resonances, nor is there suffi-
cient experimental data which could be used to guide the-
oretical predictions. Much of the difficulty is related to the
high level density in the excitation energy region where the
states are populated in the 24Mg compound nucleus. How-
ever, the 12C+12C reaction is very selective in the states
that it can populate (only T=0 and even J+ states), since
the reactants are identical T=0 and 0+ bosons. Thus far,
it is not clear how to populate only these relevant states in
24Mg via alternative reaction channels making it difficult
to identify the states of interest in the appropriate energy
range.
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The unpredictability of the 12C+12C resonance struc-
ture at low energies introduces a large degree of uncer-
tainty in the astrophysical cross sections. Recent work at
the Nuclear Science Lab (NSL) at Notre Dame (ND) has
been focused on reducing this uncertainty through direct
measurements and improved cross section extrapolation
techniques. In this paper, two projects are highlighted.
The first involves studying the carbon isotope fusion re-
actions (12C+13C and 13C+13C) to establish an upper limit
on the 12C+12C cross section at all energies. The second
project involves direct measurements of the neutron chan-
nel at astrophysical energies while using experimental re-
sults for the mirror proton channels to provide a reliable
cross section extrapolation at lower energies.

2 The Isotope Fusion Project

In recent years, the 12C+12C low-energy cross section has
become even more uncertain due to the observation of an
extremely large resonance at 2.14 MeV by Spillane et al.
[8]. This resonance was observed in both the proton and
alpha channels based on detection of the gamma-decay
of the first excited states in the residual nuclei. Though
the resonance was very narrow compared to the ones at
higher energies (<12 keV compared to ∼100 keV), the S*-
factor was seen to jump by a factor of 300 in the alpha-
channel relative to the average baseline value (other reso-
nances typically enhance the S-factor by less than a factor
of 5). Nevertheless, the existence of such a strange res-
onance would open the possibility that more like it could
exist at even lower energies, perhaps even larger.

This increased uncertainty was soon after exploited to
reconcile superburst models with astrophysical observa-
tions. The driving issue was that the column depth of
the explosion within the neutron star inferred from the
observed light curves was inconsistent with models (see
Ref. [3] and references therein). The superburst mod-
els were unable to generate sufficient heat to trigger the
12C+12C thermonuclear runaway at the suitable shallow
depths. However, with a sufficiently large resonance in the
fusion cross section, this problem could be solved. This
was proposed by Cooper, Steiner, and Brown, who inves-
tigated the feasibility of a large resonance at 1.5 MeV [3].
The location and strength of the potential resonance was
estimated based on the properties of the large resonance
observed in the Spillane measurement. They argued that it
was not unreasonable to expect that a strong enough reso-
nance might exist that could explain the triggering of the
superburst as the observed column depths without the need
for some unknown heat source.

2.1 An upper limit on the resonance strengths

In an attempt to learn about the gross structure of the low-
energy 12C+12C excitation function, the carbon isotope fu-
sion reactions were recently studied at ND. The 12C+13C
and 13C+13C cross sections were known to display much
smoother behavior below the Coulomb barrier [9, 10]. The
measurement of 12C+13C in Ref. [9] stops above 3 MeV
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FIG. 3. (Color online) The fusion cross sections of three carbon

isotope fusion reactions around or below the Coulomb barrier:
12C+

12C (red stars) [9], 12C+
13C from this work (black points) and

Ref. [12] (green squares), and 13C+
13C [13] (magenta triangles).

The systematic uncertainties, 30% for the 12C+
12C data, 15% for the

13C+
13C data, and 30% for the 12C+

13C data fromRef. [12] [12C+
13C

(Dayras)], are not shown in the graph. The 12C+
13C data reported

in this paper [12C+
13C(ND)] are dominated by a 20% systematic

uncertainty, which is included in this graph.

Dayras experiment [12], bothworks agreewellwith each other.

Since our experiment requires the branching ratio information

from the Dayras measurement [12], we can only normalize our

data to the Dayras data at Ec.m. = 4.8 MeV in order to avoid a

double counting of the systematic errors.

III. THE CORRELATION BETWEEN 12C�
12C, 12C�

13C,

AND 13C�
13C FUSION CROSS SECTIONS

The shape of the fusion cross sections at sub-barrier

energies is primarily dominated by the Coulomb barrier

penetration effect. To remove this effect and reveal more

details of the nuclear interaction, the cross sections of all

three carbon fusion systems are converted into S∗ factors

using Eq. (1). The advantage of using this conversion over the

traditional presentation with the astrophysical S factor [12]

is that the cross-section ratios among the three systems are

preserved in this representation. The results are shown in

Fig. 4. There are several important features in these carbon-

isotope fusion systems: (a) The observed cross sections for
12C+

12C are the smallest of the three systems. They are bound

from above by the cross sections of the other two carbon

systems, 12C+
13C and 13C+

13C. (b) Considering a systematic

uncertainty of 15–30% for the data from Refs. [9,12,13]

(not shown in Fig. 4), the major resonant cross sections of
12C+

12C (Er = 3.1, 4.3, 4.9, 5.7, 6.0, and 6.3 MeV) match

remarkably well with the fusion cross sections of the other two

carbon isotope combinations within their quoted uncertainties.

(c) Overall, the 12C+
13C cross sections are the largest among

the three carbon isotope fusion systems. Excluding the data

point at 4.3 MeV in 12C+
13C, the differences between

12C+
13C and 13C+

13C in the energy range of 3.5 to 5 MeV is

less than 30%.
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FIG. 4. (Color online) (top) The experimental S∗ factors of three

carbon-isotope fusion reactions around or below the Coulomb barrier:
12C+

12C (red stars) [9], 12C+
13C from this work (black points) and

Ref. [12] (green squares), and 13C+
13C [13] (magenta triangles). See

the caption of Fig. 3 for a discussion on uncertainties. (bottom) The

experimental cross sections of three carbon-isotope fusion reactions

above the Coulomb barrier: 12C+
12C (red points) [16], 12C+

13C

(green squares) [16] and 13C+
13C [13] (magenta triangles).

The fusion cross sections of the three systems at energies

above the Coulomb barrier show a similar behavior. Using the

data from Refs. [13,16], the cross sections are plotted against

the inverse of the center-of-mass energy as shown in Fig. 4. It is

obvious that the cross sections for 12C+
13C and 13C+

13C still

provide an upper limit for 12C+
12C up to the highest measured

energies. The trend of 12C+
13C in a plot of σ versus 1/Ec.m.

agrees with the one of 13C+
13C within their uncertainties.

We have fitted both 12C+
13C and 13C+

13C in the energy

range of 4.9 to 8.0 MeV using the Wong formula [17].

The extracted fusion barrier parameters, Rb, Vb, and h̄ω are

summarized in Table I. The systematic uncertainties were

included in the fit. It is evident that both systems have very

similar fusion barriers. We also tried to fit the 12C+
12C data

fromRef. [9] at energies around theCoulombbarrier.However,

because of the strong resonant structure, the fitting results

strongly depend on the choice of fitting range. Therefore, no

meaningful result could be achieved. Kovar et al. have fitted

their 12C+
12C and 12C+

13C data using a simple classical

fusion model in the energy range of 1.1Vb to 2Vb [16].

Because the fitswere performed at energies above theCoulomb

014607-3

Figure 1. The S*-factors for the carbon isotope fusion reactions:
12C+12C from Ref. [14], 13C+13C from Ref. [10], 12C+13C from
Ref. [9], and 12C+13C from ND [11].

(center-of-mass). The recent work at NSL was able to ex-
tend the measurements much further below the Coulomb
barrier to 2.6 MeV (Fig. 1) where the cross section drops
by a factor of 50. The details of the experiment can be
found in Ref. [11]. The results show good agreement with
the previous measurement from Ref. [9] in the overlap-
ping energy range. However, the most striking result is
seen by comparing the 12C+13C excitation function with
those of 13C+13C and 12C+12C using the same cross sec-
tion factor: S ∗(E) = σ(E)E exp

( 87.21
√

E
+ 0.46E

)
(Fig. 1). It

is seen that 12C+13C and 13C+13C display the same general
trend with good agreement within the systematic uncer-
tainties. 12C+12C, on the other hand, always falls below
except at the resonance energies where good agreement
is achieved. This correlation holds true across the entire
measured energy range, except the unusually strong res-
onance reported by Spillane [8]. The reason for this has
been explained as due to the relatively lower level den-
sity in the compound nucleus for 12C+12C compared to
12C+13C and 13C+13C [11, 12]. As a result, the isotope
fusion systems provide an upper limit for the 12C+12C
system. Since the isotope systems are much easier to
model due to their smooth behavior, such an upper limit
could be predicted down through the astrophysical energy
range. To this end, a coupled-channels (CC) calculation
was done by H. Esbensen [13]. By using nuclear structure
data for 12C and 13C, the experimental point-proton den-
sity for 12C, and tuning the CC parameters to the 13C+13C
measurement from Ref. [10], Esbensen was able to pro-
vide a prediction for the 12C+13C system which displayed
good agreement with experimental data down through the
lowest measurements provided by ND, and more impor-
tantly, a prediction of an upper limit for the 12C+12C sys-
tem which showed good agreement with the experimental
resonant cross sections (Fig. 2).

The new upper limit is compared to the resonance pro-
posed in Ref. [3] in Fig. 2. The hypothetical resonance
at 1.5 MeV is seen to be about 40 times larger. Further-
more, the resonance observed by Spillane at 2.14 MeV
is also found to be well above the newly predicted upper
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Figure 2. The total fusion S*-factors from Ref. [14] (red stars)
and [8] (blue circles), along with the proton S*-factor from
Ref. [15] (green triangles) are shown with the predicted upper
limit (solid red) and hypothetical resonances from Ref. [3] (blue).
The CF88 extrapolation [5] is also shown (dashed red).

limit. This suggests that if these resonances exist, they
must be present due to some unknown phenomenon that
is not present for the resonances observed at higher en-
ergies. A more likely explanation is that such large reso-
nances in the 12C+12C system do not exist and the observa-
tion by Spillane was influenced by a beam-induced back-
ground reaction that was not taken into account [11, 15].
Indeed, a more recent low-energy measurement [15] was
unable to confirm the existence of this resonance in the
proton channel (Fig. 2). It would be extremely impor-
tant to provide experimental confirmation or denial of this
resonance which has already shown great implications for
modeling astrophysical systems. However, such experi-
ments remain extraordinarily challenging and require the
use of large-current accelerators with ultra-clean targets
under high vacuum, as well as efficient and selective de-
tection systems.

3 The 12C+12C→23Mg+n project

The second half of this paper highlights the work done at
ND to reduce the uncertainty in the neutron branch of the
12C+12C reaction. This has been done through a combina-
tion of direct measurements and an improvement in the
low-energy extrapolation of the cross section. Multiple
measurements were made at NSL which have been pre-
sented previously in Refs. [16–18]. Only the most recent
results are presented here. More details can be found in
Ref. [19].

3.1 Motivation

The primary impact of the 12C+12C→23Mg+n reaction
(hereafter referred to as CCN) surrounds the component of
s-process nucleosynthesis which occurs during convective
shell-carbon burning of massive stars. The so-called weak
s-process is responsible for the elements between iron and
strontium and occurs also during convective core helium
burning in massive stars with the neutrons coming mainly
from the reaction 22Ne(α,n)25Mg (see Ref. [20] and refer-
ences therein). The (α,n) rate determines to what extent
22Ne is consumed during helium burning. Any leftover
22Ne is rapidly consumed during the hotter carbon burn-
ing stages. Despite a relatively low neutron branch, the
carbon fusion reaction may contribute a significant flux
of neutrons during these burning stages. This additional

neutron flux can have an influence on heavy-element pro-
duction, including abundances near s-process branching
points and s-only isotopes below mass 100. Indeed, a sen-
sitivity of the abundances on the CCN reaction has already
been demonstrated in Ref. [21]. The range of enhancement
factors investigated in that work reflects the large uncer-
tainty in this reaction which up to now has not been quan-
tified.

Prior to our work, the low-energy CCN cross section
was measured only two times. The first measurement by
Patterson et al. [22] failed to reach low enough energies
for astrophysical relevance stopping at 4.23 MeV (energies
are quoted in the center-of-mass frame unless otherwise
noted). The important energy range depends on the tem-
perature of the astrophysical environment, but for shell-
carbon burning is generally between 2.8 and 3.8 MeV. A
subsequent measurement by Dayras et al. [4] provided
data down to 3.54 MeV. The cross section at lower en-
ergies was estimated using a statistical model calculation
which was normalized to experimental data. Due to the
resonance structure present in 12C+12C, the CCN excita-
tion function is observed to deviate from the statistical
model calculation by as much as a factor of 4 [4]. As a
result, the uncertainty in the estimation at lower energies,
where resonance effects can be amplified, is quite large.
Presumably this is the reason why Caughlan and Fowler
decided to leave out the Dayras extrapolation from their
1988 evaluation of thermonuclear reaction rates (CF88)
[5] estimating the CCN rate simply as a step function
at T=1.7 GK. The implications of this have propagated
through subsequent stellar models which have adopted this
evaluation through the following two decades. A prime
example of where this might be important is in the work
by Limongi and Chieffi on the production of 60Fe in mas-
sive stars [23]. 60Fe is believed to be produced primar-
ily during shell-carbon burning (the extent of this depends
on stellar mass) which generally takes place at tempera-
tures below 1.7 GK. Since 59Fe is unstable with a rela-
tively short half life (t1/2=44 days), the high neutron flux
during shell-carbon burning is necessary to bridge the in-
stability gap to produce 60Fe from stable 58Fe. By ignor-
ing the CCN reaction, the neutron flux and, therefore, 60Fe
production is likely underestimated. Since 60Fe decay can
be observed directly in the galaxy [24], it is important to
provide accurate nuclear data wherever possible in order
to answer key questions about stellar evolution. Addition-
ally, the production of 26Al in the galaxy, which is a simi-
larly long-lived isotope produced in massive stars and ob-
served by gamma-ray satellites, is expected to be sensitive
to the CCN reaction [25]. These observations can provide
further information on stellar structure and galactic chem-
ical evolution provided reliable nuclear data is available.
Therefore it is important to reduce and quantify the un-
certainty in the CCN reaction as well as provide the most
accurate cross section estimation possible.

3.2 Experiment

The early measurements of CCN were done by detecting
the residual 23Mg which β-decays with a half life of 11.3
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Figure 3. The setup for the CCN cross section measurement.

seconds. Similar measurements were recently performed
at NSL and have been highlighted in Refs. [16–19]. This
paper will summarize only the most recent measurement
at NSL which detected the neutrons produced by CCN.
In this experiment, a 12C beam was produced by a ce-
sium sputter ion source and injected into a 11 MV FN tan-
dem Van de Graaff accelerator. Beam energies between
8.7 and 5.1 MeV were studied. The beam impinged on a
1mm-thick highly-ordered pyrolytic graphite (HOPG) tar-
get which is known to be relatively free of hydrogen con-
tamination [15]. The target was positioned inside a Fara-
day cup while -500V suppression voltage was applied by
a long copper tube cooled with liquid nitrogen positioned
just upstream. A schematic of the setup is shown in Fig. 3.
The target was surrounded by 20 3He proportional coun-
ters embedded in a block of polyethylene. The 3He coun-
ters were arranged in two concentric rings with 8 in the
inner ring and 12 in the outer ring. The neutron detection
efficiency was obtained from a Geant4 simulation pack-
age which was calibrated by experimental efficiency data
[26] but modified for neutron kinematics characteristic of
12C+12C [19].

The main background source in the total neutron yield
was due to 12C+13C→24Mg+n where 13C was naturally
present in the target at 1.1%. To measure the neutron yield
from this reaction, a 13C beam was used, and the yield
curve was measured across the same energy range in the
center-of-mass. The resulting yield curve was used to sub-
tract the 12C+13C background from the total neutron yield
(see Ref. [19] for details) leaving the yield from CCN.

The resulting S*-factor from the thick target yield is
shown in Fig. 4 along with the previous measurements, in-
cluding the earlier results from NSL. It is seen that the new
results extend deep into the astrophysical energy range and
display good agreement with the earlier measurements at
overlapping energies. For comparison, the Dayras extrap-
olation is plotted with the data. The new results appear
to follow the extrapolation well despite an obvious reso-
nance structure which seems to be dampening as the re-
action threshold at 2.6 MeV is approached. The new re-
sults greatly reduce the stellar rate uncertainty since the
energy range requiring an extrapolation has been signifi-
cantly shortened.

3.3 Extrapolation

The Dayras extrapolation shown in Fig. 4 is computed by
applying the statistical model calculation of the neutron
branching ratio from Ref. [4] to the CF88 estimation of
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Figure 4. The present CCN S*-factor results are shown with the
previous measurements from Refs. [4, 19, 22]. Also shown is the
Dayras extrapolation and the new extrapolation from this work
(Sect. 3.3). The astrophysical energy range is shaded orange.

the 12C+12C total fusion cross section [5]. Although this
extrapolation continues to provide a reasonable approxi-
mation of the measured cross section, the uncertainty re-
mains to be addressed which arises primarily from the un-
known resonant structure in the unmeasured energy range.
To better account for the resonance structure in the ex-
trapolated range, two important considerations are made.
1) The neutron and proton channels are mirror channels:
i.e. the residual nuclides 23Mg and 23Na are mirror nuclei
with nearly identical low-lying structure. Any differences
between corresponding n and p channels should be due
mainly to Coulomb barrier penetrability and the different
Q-values. 2) The only open neutron channels at astrophys-
ical energies are n0 and n1 (direct population of the ground
and 1st excited states in 23Mg) and that experimental cross
section data exists in this energy range [15]. Therefore, we
have taken a similar approach as Dayras by using a statis-
tical model calculation to estimate the neutron branching
ratio. The difference is that we calculate the ratio n0+n1

p0+p1
and apply this to the experimental data from Ref. [15].
In this way, the resonance structure should be accurately
represented. The statistical model should be able to pro-
vide a reasonable calculation of this ratio since the pri-
mary influences are the Q-values and Coulomb barrier ef-
fects as mentioned above, while nuclear structure effects
largely cancel out. Indeed, the level of agreement with
experimental neutron data is quite remarkable; generally
less than 40% deviations for Ecm<5.5 MeV [19]. Details
of the calculation are provided in Ref. [19] which use the
statistical model TALYS (www.talys.eu) with input from
the CC calculation of Ref. [13] for the entrance channel
spin populations. The agreement with experimental data
provides confidence in the extrapolation to lower energies
(Fig. 4). An additional improvement is the quantification
of the uncertainty which is mainly related to the deviation
of the calculation from experimental data [19]. The result-
ing uncertainty translates to a mere 50% uncertainty in the
reaction rate at typical shell-carbon burning temperatures
[19]. This is a vast improvement compared to the previous
values which have been assumed to be as high as a factor
of 10 variation [21].
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4 Summary

An accurate knowledge of the low-energy 12C+12C cross
section is critical for modeling a number of astrophysi-
cal systems including massive stars, type Ia supernovae,
and x-ray superbursts. Unfortunately, the excitation func-
tion is complicated by resonances whose structure cannot
be predicted when extrapolating the measured cross sec-
tion into the lower astrophysical energy range. As a re-
sult, the astrophysical rate is quite uncertain. Recent work
at NSL has aimed to reduce the uncertainties associated
with these low-energy resonances. The first study, high-
lighted in Sect. 2, helped establish an upper limit on the
12C+12C fusion rate by examining correlations between
the carbon isotope fusion excitation functions. This re-
sult has already provided an important constraint for su-
perburst models [27].

The second project from NSL (Sect. 3) was focused
on reducing the uncertainty in the astrophysical rate of
12C(12C,n)23Mg. The cross section has been measured
deep within the astrophysical energy range. Additionally,
an improved extrapolation based on experimental data of
the mirror proton channels 12C(12C,p0,1) has been provided
to estimate the remaining low energies. This result greatly
reduces the rate uncertainty as well as provides a quantifi-
cation of the uncertainty for stellar models, giving impor-
tant constraints for modeling of heavy element production
in massive stars.
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